Computadoras, automatización, robots e inteligencia artificial.
Definiciones, descripciones y conceptos.

Autor: José Luis Martínez Fraile

Informática o computación

bullet
Conjunto de conocimientos científicos y de técnicas que hacen posible el tratamiento automático de la información por medio de computadoras.
bullet
La informática combina los aspectos teóricos y prácticos de la ingeniería, electrónica, teoría de la información, matemáticas, lógica y comportamiento humano. Los aspectos de la informática cubren desde la programación y la arquitectura informática hasta la inteligencia artificial y la robótica.

Historia del ordenador o computadora

bullet
La primera máquina de calcular mecánica, un precursor del ordenador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.
bullet
El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos.
bullet
Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.
bullet
La máquina analítica
bullet
También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés Lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.
bullet
Primeros ordenadores
bullet
Los ordenadores analógicos comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.
bullet
Ordenadores electrónicos con válvulas o tubos de vacío
bullet
Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico digital electrónico (ENIAC) en 1945. El ENIAC, que según mostró la evidencia se basaba en gran medida en el ‘ordenador’ Atanasoff-Berry (ABC, acrónimo de Electronic Numerical Integrator and Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde.
bullet
El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador.
bullet
Ordenadores electrónicos con transistores
bullet
A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.
bullet
Ordenadores electrónicos con Circuitos integrados
bullet
A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.

Ordenador o computadora

bullet
Dispositivo electrónico capaz de recibir un conjunto de instrucciones y ejecutarlas realizando cálculos sobre los datos numéricos, o bien compilando y correlacionando otros tipos de información.
bullet
El mundo de la alta tecnología nunca hubiera existido de no ser por el desarrollo del ordenador o computadora. Toda la sociedad utiliza estas máquinas, en distintos tipos y tamaños, para el almacenamiento y manipulación de datos. Los equipos informáticos han abierto una nueva era en la fabricación gracias a las técnicas de automatización, y han permitido mejorar los sistemas modernos de comunicación. Son herramientas esenciales prácticamente en todos los campos de investigación y en tecnología aplicada.
bullet
Tipos de ordenadores o computadoras
bullet
En la actualidad se utilizan dos tipos principales de ordenadores: analógicos y digitales. Sin embargo, el término ordenador o computadora suele utilizarse para referirse exclusivamente al tipo digital. Los ordenadores analógicos aprovechan la similitud matemática entre las interrelaciones físicas de determinados problemas y emplean circuitos electrónicos o hidráulicos para simular el problema físico. Los ordenadores digitales resuelven los problemas realizando cálculos y tratando cada número dígito por dígito.
bullet
Las instalaciones que contienen elementos de ordenadores digitales y analógicos se denominan ordenadores híbridos. Por lo general se utilizan para problemas en los que hay que calcular grandes cantidades de ecuaciones complejas, conocidas como integrales de tiempo. En un ordenador digital también pueden introducirse datos en forma analógica mediante un convertidor analógico digital, y viceversa (convertidor digital a analógico).
bullet
Ordenadores analógicos
bullet
El ordenador analógico es un dispositivo electrónico o hidráulico diseñado para manipular la entrada de datos en términos de, por ejemplo, niveles de tensión o presiones hidráulicas, en lugar de hacerlo como datos numéricos. El dispositivo de cálculo analógico más sencillo es la regla de cálculo, que utiliza longitudes de escalas especialmente calibradas para facilitar la multiplicación, la división y otras funciones. En el típico ordenador analógico electrónico, las entradas se convierten en tensiones que pueden sumarse o multiplicarse empleando elementos de circuito de diseño especial. Las respuestas se generan continuamente para su visualización o para su conversión en otra forma deseada.
bullet
Ordenadores digitales
bullet
Todo lo que hace un ordenador digital se basa en una operación: la capacidad de determinar si un conmutador, o ‘puerta’, está abierto o cerrado. Es decir, el ordenador puede reconocer sólo dos estados en cualquiera de sus circuitos microscópicos: abierto o cerrado, alta o baja tensión o, en el caso de números, 0 o 1. Sin embargo, es la velocidad con la cual el ordenador realiza este acto tan sencillo lo que lo convierte en una maravilla de la tecnología moderna. Las velocidades del ordenador se miden en megahercios, o millones de ciclos por segundo. Un ordenador con una velocidad de reloj de 100 MHz, velocidad bastante representativa de un microordenador o microcomputadora, es capaz de ejecutar 100 millones de operaciones discretas por segundo. Las microcomputadoras de las compañías pueden ejecutar entre 150 y 200 millones de operaciones por segundo, mientras que las supercomputadoras utilizadas en aplicaciones de investigación y de defensa alcanzan velocidades de miles de millones de ciclos por segundo.
bullet
La velocidad y la potencia de cálculo de los ordenadores digitales se incrementan aún más por la cantidad de datos manipulados durante cada ciclo. Si un ordenador verifica sólo un conmutador cada vez, dicho conmutador puede representar solamente dos comandos o números. Así, ON simbolizaría una operación o un número, mientras que OFF simbolizará otra u otro. Sin embargo, al verificar grupos de conmutadores enlazados como una sola unidad, el ordenador aumenta el número de operaciones que puede reconocer en cada ciclo. Por ejemplo, un ordenador que verifica dos conmutadores cada vez, puede representar cuatro números (del 0 al 3), o bien ejecutar en cada ciclo una de las cuatro operaciones, una para cada uno de los siguientes modelos de conmutador: OFF-OFF (0), OFF-ON (1), ON-OFF (2) u ON-ON (3).
bullet
En general, los ordenadores de la década de 1970 eran capaces de verificar 8 conmutadores simultáneamente; es decir, podían verificar ocho dígitos binarios, de ahí el término bit de datos en cada ciclo. Un grupo de ocho bits se denomina byte y cada uno contiene 256 configuraciones posibles de ON y OFF (o 1 y 0). Cada configuración equivale a una instrucción, a una parte de una instrucción o a un determinado tipo de dato; estos últimos pueden ser un número, un carácter o un símbolo gráfico. Por ejemplo, la configuración 11010010 puede representar datos binarios, en este caso el número decimal 210, o bien estar indicando al ordenador que compare los datos almacenados en estos conmutadores con los datos almacenados en determinada ubicación del chip de memoria.
bullet
El desarrollo de procesadores capaces de manejar simultáneamente 16, 32 y 64 bits de datos ha permitido incrementar la velocidad de los ordenadores. La colección completa de configuraciones reconocibles, es decir, la lista total de operaciones que una computadora es capaz de procesar, se denomina conjunto, o repertorio, de instrucciones. Ambos factores, el número de bits simultáneos y el tamaño de los conjuntos de instrucciones, continúa incrementándose a medida que avanza el desarrollo de los ordenadores digitales modernos.

Hardware (elementos físicos)

bullet
Todos los ordenadores digitales modernos son similares conceptualmente con independencia de su tamaño.
bullet
Sin embargo, pueden dividirse en varias categorías según su precio y rendimiento. El ordenador o computadora personal es una máquina de coste relativamente bajo y por lo general de tamaño adecuado para un escritorio (algunos de ellos, denominados portátiles, o laptops, son lo bastante pequeños como para caber en un maletín); la estación de trabajo, un microordenador con gráficos mejorados y capacidades de comunicaciones que lo hacen especialmente útil para el trabajo de oficina; el miniordenador o minicomputadora, un ordenador de mayor tamaño que por lo general es demasiado caro para el uso personal y que es apto para compañías, universidades o laboratorios; y el mainframe, una gran máquina de alto precio capaz de servir a las necesidades de grandes empresas, departamentos gubernamentales, instituciones de investigación científica y similares (las máquinas más grandes y más rápidas dentro de esta categoría se denominan superordenadores).
bullet
En realidad, un ordenador digital no es una única máquina, en el sentido en el que la mayoría de la gente considera a los ordenadores. Es un sistema compuesto de cinco elementos diferenciados: una CPU (unidad central de proceso); dispositivos de entrada; dispositivos de almacenamiento de memoria; dispositivos de salida y una red de comunicaciones, denominada bus, que enlaza todos los elementos del sistema y conecta a éste con el mundo exterior.
bullet
CPU (unidad central de proceso)
bullet
La CPU puede ser un único chip o una serie de chips que realizan cálculos aritméticos y lógicos y que temporizan y controlan las operaciones de los demás elementos del sistema. Las técnicas de miniaturización y de integración han posibilitado el desarrollo de un chip de CPU denominado microprocesador, que incorpora un sistema de circuitos y memoria adicionales. El resultado son unos ordenadores más pequeños y la reducción del sistema de circuitos de soporte. Los microprocesadores se utilizan en la mayoría de los ordenadores personales de la actualidad.
bullet
La mayoría de los chips de CPU y de los microprocesadores están compuestos de cuatro secciones funcionales: una unidad aritmética/lógica; unos registros; una sección de control y un bus interno. La unidad aritmética/lógica proporciona al chip su capacidad de cálculo y permite la realización de operaciones aritméticas y lógicas. Los registros son áreas de almacenamiento temporal que contienen datos, realizan un seguimiento de las instrucciones y conservan la ubicación y los resultados de dichas operaciones. La sección de control tiene tres tareas principales: temporiza y regula las operaciones de la totalidad del sistema informático; su descodificador de instrucciones lee las configuraciones de datos en un registro designado y las convierte en una actividad, como podría ser sumar o comparar, y su unidad interruptora indica en qué orden utilizará la CPU las operaciones individuales y regula la cantidad de tiempo de CPU que podrá consumir cada operación.
bullet
El último segmento de un chip de CPU o microprocesador es su bus interno, una red de líneas de comunicación que conecta los elementos internos del procesador y que también lleva hacia los conectores externos que enlazan al procesador con los demás elementos del sistema informático. Los tres tipos de bus de la CPU son: el bus de control que consiste en una línea que detecta las señales de entrada y de otra línea que genera señales de control desde el interior de la CPU; el bus de dirección, una línea unidireccional que sale desde el procesador y que gestiona la ubicación de los datos en las direcciones de la memoria; y el bus de datos, una línea de transmisión bidireccional que lee los datos de la memoria y escribe nuevos datos en ésta.
bullet
Dispositivos de entrada
bullet
Estos dispositivos permiten al usuario del ordenador introducir datos, comandos y programas en la CPU.
bullet
El dispositivo de entrada más común es un teclado similar al de las máquinas de escribir. La información introducida con el mismo, es transformada por el ordenador en modelos reconocibles. 
bullet
Otros dispositivos de entrada son los lápices ópticos, que transmiten información gráfica desde tabletas electrónicas hasta el ordenador.
bullet
Los Joysticks y el ratón o mouse, que convierte el movimiento físico en movimiento dentro de una pantalla de ordenador.
bullet
Los escáneres luminosos, que leen palabras o símbolos de una página impresa y los traducen a configuraciones electrónicas que el ordenador puede manipular y almacenar.
bullet
Los módulos de reconocimiento de voz, que convierten la palabra hablada en señales digitales comprensibles para el ordenador.
bullet
También es posible utilizar los dispositivos de almacenamiento para introducir datos en la unidad de proceso.
bullet
Dispositivos de almacenamiento
bullet
Los sistemas informáticos pueden almacenar los datos tanto interna (en la memoria) como externamente (en los dispositivos de almacenamiento). 
bullet
Internamente, las instrucciones o datos pueden almacenarse por un tiempo en los chips de silicio de la RAM (memoria de acceso aleatorio) montados directamente en la placa de circuitos principal de la computadora, o bien en chips montados en tarjetas periféricas conectadas a la placa de circuitos principal del ordenador. Estos chips de RAM constan de conmutadores sensibles a los cambios de la corriente eléctrica. Los chips de RAM estática conservan sus bits de datos mientras la corriente siga fluyendo a través del circuito, mientras que los chips de RAM dinámica (DRAM, acrónimo de Dynamic Random Access Memory) necesitan la aplicación de tensiones altas o bajas a intervalos regulares aproximadamente cada dos milisegundos para no perder su información.
bullet
Otro tipo de memoria interna son los chips de silicio en los que ya están instalados todos los conmutadores. Las configuraciones en este tipo de chips de ROM (memoria de sólo lectura) forman los comandos, los datos o los programas que el ordenador necesita para funcionar correctamente. Los chips de RAM son como pedazos de papel en los que se puede escribir, borrar y volver a utilizar; los chips de ROM son como un libro, con las palabras ya escritas en cada página. Tanto los primeros como los segundos están enlazados a la CPU a través de circuitos.
bullet
Los dispositivos de almacenamiento externos, que pueden residir físicamente dentro de la unidad de proceso principal del ordenador, están fuera de la placa de circuitos principal. Estos dispositivos almacenan los datos en forma de cargas sobre un medio magnéticamente sensible, por ejemplo una cinta de sonido o, lo que es más común, sobre un disco revestido de una fina capa de partículas metálicas. Los dispositivos de almacenamiento externo más frecuentes son los disquetes y los discos duros, aunque la mayoría de los grandes sistemas informáticos utiliza bancos de unidades de almacenamiento en cinta magnética. Los discos flexibles pueden contener, según sea el sistema, desde varios centenares de miles de bytes hasta bastante más de un millón de bytes de datos. Los discos duros no pueden extraerse de los receptáculos de la unidad de disco, que contienen los dispositivos electrónicos para leer y escribir datos sobre la superficie magnética de los discos y pueden almacenar desde varios millones de bytes hasta algunos centenares de millones. La tecnología de CD-ROM, que emplea las mismas técnicas láser utilizadas para crear los discos compactos (CD) de audio, permiten capacidades de almacenamiento del orden de varios cientos de megabytes (millones de bytes) de datos. 
bullet
Dispositivos de salida
bullet
Estos dispositivos permiten al usuario ver los resultados de los cálculos o de las manipulaciones de datos de la computadora.
bullet
El dispositivo de salida más común es la unidad de visualización (VDU, acrónimo de Video Display Unit), que consiste en un monitor que presenta los caracteres y gráficos en una pantalla similar a la del televisor. Por lo general, las VDU tienen un tubo de rayos catódicos como el de cualquier televisor, aunque los ordenadores pequeños y portátiles utilizan hoy pantallas de cristal líquido (LCD, acrónimo de Liquid Crystal Displays) o electroluminiscentes. Otros dispositivos de salida más comunes son las impresoras y los módem. Un módem enlaza dos ordenadores transformando las señales digitales en analógicas para que los datos puedan transmitirse a través de las telecomunicaciones.

Software (programas y sistemas operativos)

bullet
Sistemas operativos
bullet
Los sistemas operativos internos fueron desarrollados sobre todo para coordinar y trasladar estos flujos de datos que procedían de fuentes distintas, como las unidades de disco o los coprocesadores (chips de procesamiento que ejecutan operaciones simultáneamente con la unidad central, aunque son diferentes).
bullet
Un sistema operativo es un programa de control principal, almacenado de forma permanente en la memoria, que interpreta los comandos del usuario que solicita diversos tipos de servicios, como visualización, impresión o copia de un archivo de datos; presenta una lista de todos los archivos existentes en un directorio o ejecuta un determinado programa.
bullet
Programación
bullet
Un programa es una secuencia de instrucciones que indican al hardware de un ordenador qué operaciones debe realizar con los datos. Los programas pueden estar incorporados al propio hardware, o bien pueden existir de manera independiente en forma de software. En algunas computadoras especializadas las instrucciones operativas están incorporadas en el sistema de circuitos; entre los ejemplos más comunes pueden citarse los microordenadores de las calculadoras, relojes de pulsera, motores de coches y hornos microondas. Por otro lado, un ordenador universal, o de uso general, contiene algunos programas incorporados (en la ROM) o instrucciones (en el chip del procesador), pero depende de programas externos para ejecutar tareas útiles. Una vez programado, podrá hacer tanto o tan poco como le permita el software que lo controla en determinado momento. El software de uso más generalizado incluye una amplia variedad de programas de aplicaciones, es decir, instrucciones al ordenador acerca de cómo realizar diversas tareas.
bullet
Lenguajes
bullet
Las instrucciones deben darse en un lenguaje de programación, es decir, en una determinada configuración de información digital binaria. En las primeras computadoras, la programación era una tarea difícil y laboriosa ya que los conmutadores ON-OFF de las válvulas de vacío debían configurarse a mano. Programar tareas tan sencillas como ordenar una lista de nombres requería varios días de trabajo de equipos de programadores. Desde entonces se han inventado varios lenguajes informáticos, algunos orientados hacia funciones específicas y otros centrados en la facilidad de uso.
bullet
Lenguaje máquina (código objeto)
bullet
El lenguaje propio del ordenador, basado en el sistema binario, o código máquina, resulta difícil de utilizar para las personas. El programador debe introducir todos y cada uno de los comandos y datos en forma binaria, y una operación sencilla como comparar el contenido de un registro con los datos situados en una ubicación del chip de memoria puede tener el siguiente formato: 11001010 00010111 11110101 00101011. La programación en lenguaje máquina es una tarea tan tediosa y consume tanto tiempo que muy raras veces lo que se ahorra en la ejecución del programa justifica los días o semanas que se han necesitado para escribir el mismo.
bullet
Lenguaje ensamblador
bullet
Uno de los métodos inventados por los programadores para reducir y simplificar el proceso es la denominada programación con lenguaje ensamblador. Al asignar un código mnemotécnico (por lo general de tres letras) a cada comando en lenguaje máquina, es posible escribir y depurar o eliminar los errores lógicos y de datos en los programas escritos en lenguaje ensamblador, empleando para ello sólo una fracción del tiempo necesario para programar en lenguaje máquina. En el lenguaje ensamblador, cada comando mnemotécnico y sus operadores simbólicos equivalen a una instrucción de máquina. Un programa ensamblador traduce el código fuente, una lista de códigos de operación mnemotécnicos y de operadores simbólicos, a código objeto (es decir, a lenguaje máquina) y, a continuación, ejecuta el programa.
bullet
Sin embargo, el lenguaje ensamblador puede utilizarse con un solo tipo de chip de CPU o microprocesador. Los programadores, que dedicaron tanto tiempo y esfuerzo al aprendizaje de la programación de un ordenador, se veían obligados a aprender un nuevo estilo de programación cada vez que trabajaban con otra máquina. Lo que se necesitaba era un método abreviado en el que un enunciado simbólico pudiera representar una secuencia de numerosas instrucciones en lenguaje máquina, y un método que permitiera que el mismo programa pudiera ejecutarse en varios tipos de máquinas. Estas necesidades llevaron al desarrollo de lenguajes de alto nivel.
bullet
Lenguajes de alto nivel
bullet
Los lenguajes de alto nivel suelen utilizar términos ingleses del tipo LIST, PRINT u OPEN como comandos que representan una secuencia de decenas o de centenas de instrucciones en lenguaje máquina.
bullet
Los comandos se introducen desde el teclado, desde un programa residente en la memoria o desde un dispositivo de almacenamiento, y son interceptados por un programa que los traduce a instrucciones en lenguaje máquina. 
bullet
Los programas traductores son de dos tipos: intérpretes y compiladores.
bullet
Con un intérprete, los programas que repiten un ciclo para volver a ejecutar parte de sus instrucciones, reinterpretan la misma instrucción cada vez que aparece. Por consiguiente, los programas interpretados se ejecutan con mucha mayor lentitud que los programas en lenguaje máquina.
bullet
 Los compiladores, por el contrario, traducen un programa íntegro a lenguaje máquina antes de su ejecución, por lo cual se ejecutan con tanta rapidez como si hubiesen sido escritos directamente en lenguaje máquina.
Se considera que fue la estadounidense Grace Hopper quien implementó el primer lenguaje de ordenador orientado al uso comercial. Después de programar un ordenador experimental en la Universidad de Harvard, trabajó en los modelos UNIVAC I y UNIVAC II, desarrollando un lenguaje de alto nivel para uso comercial llamado FLOW-MATIC.
Para facilitar el uso del ordenador en las aplicaciones científicas, IBM desarrolló un lenguaje que simplificaría el trabajo que implicaba el tratamiento de fórmulas matemáticas complejas. Iniciado en 1954 y terminado en 1957, el FORTRAN (acrónimo de Formula Translator) fue el primer lenguaje exhaustivo de alto nivel de uso generalizado.
En 1957 una asociación estadounidense, la Association for Computing Machinery comenzó a desarrollar un lenguaje universal que corrigiera algunos de los defectos del FORTRAN. Un año más tarde fue lanzado el ALGOL (acrónimo de Algorithmic Language), otro lenguaje de orientación científica. De gran difusión en Europa durante las décadas de 1960 y 1970, desde entonces ha sido sustituido por nuevos lenguajes, mientras que el FORTRAN continúa siendo utilizado debido a las gigantescas inversiones que se hicieron en los programas existentes.
El COBOL (acrónimo de Common Business Oriented Language) es un lenguaje de programación para uso comercial y empresarial especializado en la organización de datos y manipulación de archivos, y hoy día está muy difundido en el mundo empresarial.
El lenguaje BASIC (acrónimo de Código de Instrucciones Simbólicas de Uso General para Principiantes) fue desarrollado en el Dartmouth College a principios de la década de 1960 y está dirigido a los usuarios de ordenador no profesionales. Este lenguaje se universalizó gracias a la popularización de los microordenadores en las décadas de 1970 y 1980. Calificado de lento, ineficaz y poco estético por sus detractores, BASIC es sencillo de aprender y fácil de utilizar. Como muchos de los primeros microordenadores se vendieron con BASIC incorporado en el hardware (en la memoria ROM), se generalizó el uso de este lenguaje.
Aunque existen centenares de lenguajes informáticos y de variantes, hay algunos dignos de mención, como el PASCAL, diseñado en un principio como herramienta de enseñanza, hoy es uno de los lenguajes de microordenador más populares; el Logo fue desarrollado para que los niños pudieran acceder al mundo de la informática; el C, un lenguaje de Bell Laboratories diseñado en la década de 1970, se utiliza ampliamente en el desarrollo de programas de sistemas, al igual que su sucesor, el C++. El LISP y el PROLOG han alcanzado amplia difusión en el campo de la inteligencia artificial.

Evolución futura de los ordenadores

bullet
Una tendencia constante en el desarrollo de los ordenadores es la microminiaturización, iniciativa que tiende a comprimir más elementos de circuitos en un espacio de chip cada vez más pequeño. Además, los investigadores intentan agilizar el funcionamiento de los circuitos mediante el uso de la superconductividad, un fenómeno de disminución de la resistencia eléctrica que se observa cuando se enfrían los objetos a temperaturas muy bajas.
bullet
Las redes informáticas se han vuelto cada vez más importantes en el desarrollo de la tecnología de computadoras. Las redes son grupos de computadoras interconectados mediante sistemas de comunicación. La red pública Internet es un ejemplo de red informática planetaria. Las redes permiten que las computadoras conectadas intercambien rápidamente información y, en algunos casos, compartan una carga de trabajo, con lo que muchas computadoras pueden cooperar en la realización de una tarea. Se están desarrollando nuevas tecnologías de equipo físico y soporte lógico que acelerarán los dos procesos mencionados.
bullet
Otra tendencia en el desarrollo de computadoras es el esfuerzo para crear computadoras de quinta generación, capaces de resolver problemas complejos en formas que pudieran llegar a considerarse creativas. Una vía que se está explorando activamente es el ordenador de proceso paralelo, que emplea muchos chips para realizar varias tareas diferentes al mismo tiempo. El proceso paralelo podría llegar a reproducir hasta cierto punto las complejas funciones de realimentación, aproximación y evaluación que caracterizan al pensamiento humano. Otra forma de proceso paralelo que se está investigando es el uso de computadoras moleculares. En estas computadoras, los símbolos lógicos se expresan por unidades químicas de ADN en vez de por el flujo de electrones habitual en las computadoras corrientes. Las computadoras moleculares podrían llegar a resolver problemas complicados mucho más rápidamente que las actuales supercomputadoras y consumir mucha menos energía.

Automatización

bullet
Sistema de fabricación diseñado con el fin de usar la capacidad de las máquinas para llevar a cabo determinadas tareas anteriormente efectuadas por seres humanos, y para controlar la secuencia de las operaciones sin intervención humana.
bullet
El término automatización también se ha utilizado para describir sistemas no destinados a la fabricación en los que dispositivos programados o automáticos pueden funcionar de forma independiente o semiindependiente del control humano. En comunicaciones, aviación y astronáutica, dispositivos como los equipos automáticos de conmutación telefónica, los pilotos automáticos y los sistemas automatizados de guía y control se utilizan para efectuar diversas tareas con más rapidez o mejor de lo que podría hacerlo un ser humano.
bullet
Elementos de la automatización
bullet
La fabricación automatizada Surgió de la íntima relación entre fuerzas económicas e innovaciones técnicas como la división del trabajo, la transferencia de energía y la mecanización de las fábricas, y el desarrollo de las máquinas de transferencia y sistemas de realimentación, como se explica a continuación.
bullet
La división del trabajo (esto es, la reducción de un proceso de fabricación o de prestación de servicios a sus fases independientes más pequeñas) se desarrolló en la segunda mitad del siglo XVIII, y fue analizada por primera vez por el economista británico Adam Smith en su libro Investigación sobre la naturaleza y causas de la riqueza de las naciones (1776). En la fabricación, la división del trabajo permitió incrementar la producción y reducir el nivel de especialización de los obreros.
bullet
La mecanización fue la siguiente etapa necesaria para la evolución hacia la automatización. La simplificación del trabajo permitida por la división del trabajo también posibilitó el diseño y construcción de máquinas que reproducían los movimientos del trabajador. A medida que evolucionó la tecnología de transferencia de energía, estas máquinas especializadas se motorizaron, aumentando así su eficacia productiva. El desarrollo de la tecnología energética también dio lugar al surgimiento del sistema fabril de producción, ya que todos los trabajadores y máquinas debían estar situados junto a la fuente de energía.
bullet
La máquina de transferencia es un dispositivo utilizado para mover la pieza que se está trabajando desde una máquina herramienta especializada hasta otra, colocándola de forma adecuada para la siguiente operación de maquinado. Los robots industriales, diseñados en un principio para realizar tareas sencillas en entornos peligrosos para los trabajadores, son hoy extremadamente hábiles y se utilizan para trasladar, manipular y situar piezas ligeras y pesadas, realizando así todas las funciones de una máquina de transferencia. En realidad, se trata de varias máquinas separadas que están integradas en lo que a simple vista podría considerarse una sola.
bullet
En la década de 1920 la industria del automóvil combinó estos conceptos en un sistema de producción integrado. El objetivo de este sistema de línea de montaje era abaratar los precios. A pesar de los avances más recientes, éste es el sistema de producción con el que la mayoría de la gente asocia el término automatización.
bullet
Realimentación
bullet
Un elemento esencial de todos los mecanismos de control automático es el principio de realimentación, que permite al diseñador dotar a una máquina de capacidad de autocorrección. Un ciclo o bucle de realimentación es un dispositivo mecánico, neumático o electrónico que detecta una magnitud física como una temperatura, un tamaño o una velocidad, la compara con una norma preestablecida, y realiza aquella acción preprogramada necesaria para mantener la cantidad medida dentro de los límites de la norma aceptable.
bullet
El principio de realimentación se utiliza desde hace varios siglos. Un notable ejemplo es el regulador de bolas inventado en 1788 por el ingeniero escocés James Watt para controlar la velocidad de la máquina de vapor. El conocido termostato doméstico es otro ejemplo de dispositivo de realimentación.
bullet
En la fabricación y en la producción, los ciclos de realimentación requieren la determinación de límites aceptables para que el proceso pueda efectuarse; que estas características físicas sean medidas y comparadas con el conjunto de límites, y que el sistema de realimentación sea capaz de corregir el proceso para que los elementos medidos cumplan la norma. Mediante los dispositivos de realimentación las máquinas pueden ponerse en marcha, pararse, acelerar, disminuir su velocidad, contar, inspeccionar, comprobar, comparar y medir. Estas operaciones suelen aplicarse a una amplia variedad de operaciones de producción, por ejemplo el fresado, el embotellado y el refinado. Ver tambien: Cibernética.
bullet
Automatización y computadoras
bullet
El advenimiento del ordenador o computadora ha facilitado enormemente el uso de ciclos de realimentación en los procesos de fabricación. En combinación, las computadoras y los ciclos de realimentación han permitido el desarrollo de máquinas controladas numéricamente (cuyos movimientos están controlados por papel perforado o cintas magnéticas) y centros de maquinado (máquinas herramientas que pueden realizar varias operaciones de maquinado diferentes).
bullet
La aparición de las combinaciones de microprocesadores y computadoras ha posibilitado el desarrollo de la tecnología de diseño y fabricación asistidos por computadora (CAD/CAM).
bullet
Empleando estos sistemas, el diseñador traza el plano de una pieza e indica sus dimensiones con la ayuda de un ratón o mouse, un lápiz óptico u otro dispositivo de introducción de datos. Una vez que el boceto ha sido terminado, la computadora genera automáticamente las instrucciones que dirigirán el centro de maquinado para elaborar dicha pieza.
bullet
Otro avance que ha permitido ampliar el uso de la automatización es el de los sistemas de fabricación flexibles (FMS). Los FMS han llevado la automatización a las empresas cuyos bajos volúmenes de producción no justificaban una automatización plena. Se emplea una computadora para supervisar y dirigir todo el funcionamiento de la fábrica, desde la programación de cada fase de la producción hasta el seguimiento de los niveles de inventario y de utilización de herramientas.
bullet
Asimismo, aparte de la fabricación, la automatización ha influido enormemente sobre otras áreas de la economía. Se utilizan computadoras pequeñas en sistemas denominados procesadores de textos, que se están convirtiendo en la norma de la oficina moderna. Esta tecnología combina una pequeña computadora con una pantalla de monitor de rayos catódicos, un teclado de máquina de escribir y una impresora. Se utiliza para editar texto, preparar cartas modelo personalizadas para su destinatario y gestionar listas de correo y otros datos. El sistema es capaz de realizar muchas otras tareas que han incrementado la productividad de la oficina. 

La automatización en la industria

bullet
El concepto de automatización está evolucionando rápidamente, en parte debido a que las técnicas avanzan tanto dentro de una instalación o sector como entre las industrias. Muchas industrias están muy automatizadas, o bien utilizan tecnología de automatización en alguna etapa de sus actividades.
bullet
En las comunicaciones, y sobre todo en el sector telefónico, la marcación, la transmisión y la facturación se realizan automáticamente. También los ferrocarriles están controlados por dispositivos de señalización automáticos, que disponen de sensores para detectar los convoyes que atraviesan determinado punto. De esta manera siempre puede mantenerse un control sobre el movimiento y ubicación de los trenes.
bullet
No todas las industrias requieren el mismo grado de automatización. La agricultura, las ventas y algunos sectores de servicios son difíciles de automatizar. Es posible que la agricultura llegue a estar más mecanizada, sobre todo en el procesamiento y envasado de productos alimenticios. Sin embargo, en muchos sectores de servicios, como los supermercados, las cajas pueden llegar a automatizarse, pero sigue siendo necesario reponer manualmente los productos en las estanterías.
bullet
El sector petroquímico ha desarrollado el método de flujo continuo de producción, posible debido a la naturaleza de las materias primas utilizadas. En una refinería, el petróleo crudo entra por un punto y fluye por los conductos a través de dispositivos de destilación y reacción, a medida que va siendo procesado para obtener productos como la gasolina y el fueloil. Un conjunto de dispositivos controlados automáticamente, dirigidos por microprocesadores y controlados por una computadora central, controla las válvulas, calderas y demás equipos, regulando así el flujo y las velocidades de reacción.
bullet
Por otra parte, en las industrias metalúrgica, de bebidas y de alimentos envasados, algunos productos se elaboran por lotes. Por ejemplo, se carga un horno de acero con los ingredientes necesarios, se calienta y se produce un lote de lingotes de acero. En esta fase, el contenido de automatización es mínimo. Sin embargo, a continuación los lingotes pueden procesarse automáticamente como láminas o dándoles determinadas formas estructurales mediante una serie de rodillos hasta alcanzar la configuración deseada.
bullet
Los sectores de automoción y de otros productos de consumo utilizan las técnicas de producción masivas de la fabricación y montaje paso a paso. Esta técnica se aproxima al concepto de flujo continuo, aunque incluye máquinas de transferencia. Por consiguiente, desde el punto de vista de la industria del automóvil, las máquinas de transferencia son esenciales para la definición de la automatización.
bullet
Cada una de estas industrias utiliza máquinas automatizadas en la totalidad o en parte de sus procesos de fabricación. Como resultado, cada sector tiene un concepto de automatización adaptado a sus necesidades específicas. En casi todas las fases del comercio pueden hallarse más ejemplos. La propagación de la automatización y su influencia sobre la vida cotidiana constituye la base de la preocupación expresada por muchos acerca de las consecuencias de la automatización sobre la sociedad y el individuo.

La automatización y la sociedad

bullet
La automatización ha contribuido en gran medida al incremento del tiempo libre y de los salarios reales de la mayoría de los trabajadores de los países industrializados. También ha permitido incrementar la producción y reducir los costes, poniendo coches, refrigeradores, televisiones, teléfonos y otros productos al alcance de más gente.
bullet
Empleo
bullet
Sin embargo, no todos los resultados de la automatización han sido positivos. Algunos observadores argumentan que la automatización ha llevado al exceso de producción y al derroche, que ha provocado la alienación del trabajador y que ha generado desempleo. De todos estos temas, el que mayor atención ha recibido es la relación entre la automatización y el paro. Ciertos economistas defienden que la automatización ha tenido un efecto mínimo, o ninguno, sobre el desempleo. Sostienen que los trabajadores son desplazados, y no cesados, y que por lo general son contratados para otras tareas dentro de la misma empresa, o bien en el mismo trabajo en otra empresa que todavía no se ha automatizado.
bullet
Hay quienes sostienen que la automatización genera más puestos de trabajo de los que elimina. Señalan que aunque algunos trabajadores pueden quedar en el paro, la industria que produce la maquinaria automatizada genera más trabajos que los eliminados. Para sostener este argumento suele citarse como ejemplo la industria informática. Los ejecutivos de las empresas suelen coincidir en que aunque las computadoras han sustituido a muchos trabajadores, el propio sector ha generado más empleos en fabricación, venta y mantenimiento de ordenadores que los que ha eliminado el dispositivo.
bullet
Por el otro lado, hay líderes sindicales y economistas que afirman que la automatización genera paro y que, si no se controla, llevará a la creación de un vasto ejército de desempleados. Sostienen que el crecimiento de los puestos de trabajo generados por la administración pública y en los sectores de servicio han absorbido a quienes han quedado desempleados como consecuencia de la automatización, y que en cuanto dichos sectores se saturen o se reduzcan los programas gubernamentales se conocerá la auténtica relación entre la automatización y el desempleo.

Cibernética

bullet
Ciencia interdisciplinar que trata de los sistemas de comunicación y control en los organismos vivos, las máquinas y las organizaciones. La palabra, que proviene del griego kyberneees ('timonel' o 'gobernador'), fue aplicado por primera vez en 1948 por el matemático Norbert Wiener a la teoría de los mecanismos de control.
bullet
La cibernética se desarrolló como investigación de las técnicas por las cuales la información se transforma en la actuación deseada. Esta ciencia surgió de los problemas planteados durante la Segunda Guerra Mundial a la hora de desarrollar los denominados cerebros electrónicos y los mecanismos de control automático para los equipos militares como los visores de bombardeo.
bullet
La cibernética contempla de igual forma los sistemas de comunicación y control de los organismos vivos que los de las máquinas. Para obtener la respuesta deseada en un organismo humano o en un dispositivo mecánico, habrá que proporcionarle, como guía para acciones futuras, la información relativa a los resultados reales de la acción prevista. En el cuerpo humano, el cerebro y el sistema nervioso coordinan dicha información, que sirve para determinar una futura línea de conducta; los mecanismos de control y de autocorrección en las máquinas sirven para lo mismo. El principio se conoce como feedback (realimentación), que constituye el concepto fundamental de la automatización.
bullet
Según la teoría de la información, uno de los principios básicos de la cibernética establece que la información es estadística por naturaleza y se mide de acuerdo con las leyes de la probabilidad. En este sentido, la información es concebida como una medida de la libertad de elección implícita en la selección. A medida que aumenta la libertad de elección, disminuye la probabilidad de que sea elegido un determinado mensaje. La medida de la probabilidad se conoce como entropía. De acuerdo con la segunda ley de la termodinámica, en los procesos naturales existe una tendencia hacia un estado de desorganización, o caos, que se produce sin ninguna intervención o control. En consecuencia, de acuerdo con los principios de la cibernética, el orden (disminución de la entropía) es lo menos probable, y el caos (aumento de la entropía) es lo más probable. La conducta intencionada en las personas o en las máquinas exige mecanismos de control que mantengan el orden, contrarrestando la tendencia natural hacia la desorganización.
bullet
La cibernética también se aplica al estudio de la psicología, la inteligencia artificial, los servomecanismos, la economía, la neurofisiología, la ingeniería de sistemas y al de los sistemas sociales. La palabra cibernética ha dejado de identificar un área independiente de estudio y la mayor parte de la actividad investigadora se centra ahora en el estudio y diseño de redes neurales artificiales.

Inteligencia artificial (I.A.)

bullet
Término que, en su sentido más amplio, indicaría la capacidad de un artefacto de realizar los mismos tipos de funciones que caracterizan al pensamiento humano. La posibilidad de desarrollar un artefacto así ha despertado la curiosidad del ser humano desde la antigüedad. Con el avance de la ciencia moderna la búsqueda de la IA (inteligencia artificial) ha tomado dos caminos fundamentales: la investigación psicológica y fisiológica de la naturaleza del pensamiento humano, y el desarrollo tecnológico de sistemas informáticos cada vez más complejos.
bullet
La inteligencia es la consecuencia lógica de la aplicación del conocimiento adquirido.
Tomando como definición de Inteligencia Artificial, la que dio en su día Marvin Minsky (frase tal, que se ha hecho famosa por donde quiera que va):
bullet
"La Inteligencia Artificial es el arte de hacer máquinas capaces de hacer cosas que requerirían inteligencia en caso de que fuesen hechas por seres humanos"
bullet
Esta definición nos llevaría, o por lo menos, nos ayudaría a entender porqué en inteligencia artificial hay tantas ramas, pues al igual que la medicina, la I.A. debe abarcar todo lo inherente al hombre, para podérselo ofrecer a la máquina y en definitiva, a nosotros, los seres humanos.
bullet
El término IA se ha aplicado a sistemas y programas informáticos capaces de realizar tareas complejas, simulando el funcionamiento del pensamiento humano, aunque todavía muy lejos de éste. 
bullet
En esta esfera los campos de investigación más importantes son el procesamiento de la información, el reconocimiento de modelos, los juegos y las áreas aplicadas como el diagnóstico médico. Algunas áreas de la investigación actual del procesamiento de la información están centradas en programas que permiten a un ordenador o computadora comprender la información escrita o hablada, y generar resúmenes, responder a preguntas específicas o redistribuir datos a los usuarios interesados en determinados sectores de esta información. En esos programas es esencial la capacidad del sistema de generar frases gramaticalmente correctas y de establecer vínculos entre palabras e ideas. La investigación ha demostrado que mientras que la lógica de la estructura del lenguaje, su sintaxis, está relacionada con la programación, el problema del significado, o semántica, es mucho más profundo, y va en la dirección de una auténtica inteligencia artificial.
bullet
Actualmente existen dos tendencias en cuanto al desarrollo de sistemas de IA: los sistemas expertos y las redes neuronales. Los sistemas expertos intentan reproducir el razonamiento humano de forma simbólica. Las redes neuronales lo hacen desde una perspectiva más biológica (recrean la estructura de un cerebro humano mediante algoritmos genéticos). A pesar de la complejidad de ambos sistemas los resultados distan mucho de un auténtico pensamiento inteligente.
bullet
Muchos científicos se muestran escépticos acerca de la posibilidad de que alguna vez pueda desarrollarse una verdadera IA. El funcionamiento de la mente humana todavía no ha llegado a conocerse en profundidad y, en consecuencia, el diseño informático seguirá siendo esencialmente incapaz de reproducir esos procesos desconocidos y complejos.

Aplicaciones de las RNA (Redes Neuronales Artificiales)

bullet
Las RNA se han aplicado a multitud de campos con excelentes resultados. Las RNA son más que nada una tecnología computacional y por lo tanto puede utilizarse en cualquier campo susceptible de operativizar sus problemas computacionalmente. Dentro del campo del "Human Computer Interaction" destaca la creación de interfaces adaptativas, que se modifican en función de las características de los usuarios. Además han conseguido excelentes resultados en generación de reconocedores de voz para interfaces naturales, creación de detectores de movimiento para punteros que sustituyan al ratón, etc.
bullet
Algunos de los ejemplos donde se están utilizando las RNA en la actualidad son:
bullet
Reconocimiento de patrones y procesamiento de la información visual.
bullet
Reconocimiento y generación de habla y escritura.
bullet
Control de robots.
bullet
Toma de decisiones y Data Mining.
bullet
Segementación, compresión y fusión de datos.
bullet
Modelización de datos cerebrales.
bullet
Previsiones metereológicas.
bullet
La lista podría ser interminable. Las RNA se presentan actualmente como una valiosa herramienta capaz de ser aplicada con buenos resultados a cualquier campo, incluidos los Factores Humanos y la Interacción Hombre-ordenador.

Autor: José Luis Martínez Fraile

 

 
Contador visitas

Home

Click here
To send e-mail
To send e-mail
 
VOLVER AL INÍCIO
Acerca de la psicologia, la mente, los robots, las computadoras y la inteligencia artificial.
VER PSICOLOGIA
Del cerebro humano y la teoría de la información.
VER ESTE ARTÍCULO
Descripción y características del robot
VER AL ROBOT Seguritron.